RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College affiliated to University of Calcutta)

B.A./B.Sc. THIRD SEMESTER EXAMINATION, MARCH 2022 SECOND YEAR [BATCH 2020-23] MICRORIOLOGY (HONOLIRS)

Date: 05/03/2022 MICROBIOLOGY (HONOURS)

Time: 11 am – 1 pm PAPER: VI [CC6] Full Marks: 50

Answer **any five** questions of the following:

[5×10]

- 1. a) Write down the ATP/GTP generating steps of TCA cycle.
 - b) How the enzyme PFK-1 is regulated by PFK-2?
 - c) What would be the effect if ingestion of 2, 4-dinitro phenol on the P/O ratio for ATP synthesis using NADH as an electron donor? Give reason(s) for your answer.
 - d) Why is pentose phosphate pathway more active in cells that are dividing than in cells that are not?
 - e) Compare and contrast substrate level phosphorylation and oxidative phosphorylation. (2+2+2+2+2)
- 2. a) Describe the fate of pyruvate formed in glycolysis during anaerobic conditions.
 - b) What are the differences between linear and branched fermentation pathways?
 - c) Name a bacterium that follow
 - i) Both homolactic and heterolactic acid fermentation.
 - ii) Both mixed acid and butanediol fermentation.
 - d) What do you mean by assimilatory and dissimilatory nitrate reduction?
 - e) What is the utility of fermentation in anaerobic organisms?

(2+2+2+2+2)

- 3. a) Give a brief account on nutritional application of vitamin K. What is anti-vitamin? Explain with example.
 - b) What will happen if vitamin D is deficient in normal diet, explain properly?
 - c) Excess amount of avidin results in accumulation of propionyl CoA in cell. Why?
 - d) State the importance of vitamin C to inhibit the intracellular pathogen.

[(2+2)+2+2+2)

- 4. a) State the importance of pantothenic acid in the metabolic process.
 - b) State the role of vitamin B1 in carbohydrate metabolism.
 - c) What do you mean by the term prosthetic group?
 - d) Give an example of vitamin that will act as a prosthetic group and state its role in the metabolism.
 - e) What is provitamin? Give an example.

[2+2+1+(1+2)+2]

- 5. a) Plant rhizobium relationship is mutual symbiosis- justify
 - b) Explain the role of reductase in nitrogen fixation.
 - c) What is mixotrophy? Give an example.
 - d) Why do nitrite oxidizing bacteria use reverse electron flow?

(3+2+2+3)

- 6. a) What do you mean by photochemical apparatus?
 - b) What may happen if a plant cell can't produce carotenoids?
 - c) Denitrification is detrimental as well as beneficial- justify.
 - d) Which steps in nodulation would not occur if Rhizobium cells become deficient of nod genes?(2+2+3+3)
- 7. a) How can synchronous growth of a bacterial culture be obtained? In what way could a synchronously growing culture be useful for the electron microscopist who is trying to determine the cytological changes associated with bacterial growth?
 - b) What are 'photolithoautotrophs' and 'photoorganoheterotrophs'? Explain with example.
 - c) Classify bacteria on the basis of their oxygen requirements. Explain each type with proper example.
 - d) Discuss the various adaptation mechanisms of psychrophiles.

[(1+2)+2+3+2]

- 8. a) Differentiate primary and secondary active transport.
 - b) One of the most important membrane proteins is the sodium-potassium pump which is an antiport system Justify the statement.
 - c) What would happen to a cell if this pump suddenly stopped working?
 - d) According to Darcy's law -

•
$$Q = \text{flow rate } (\text{m}^3/\text{s})$$

•
$$K = permeability (m^2)$$

$$Q = \left(\frac{K}{\eta}\right) \left(\frac{\Delta P}{\Delta L}\right) A$$

- ΔP = pressure difference (Pa)
- ΔL = flow length or test sample thickness (m)
- A = cross-sectional area of flow (m²)
- $\eta = D$ ynamic viscosity

Now suppose you are doing free energy calculation for a membrane transport event. Should you consider Darcy's law for that? Give proper justifications. (2+2+2+4)

9. THE FOLLOWING DATA WAS RECORDED FOR THE ENZYME CATALYZED REACTION

 $S \rightarrow P$

[S] (M)	v (nmoles x litre ⁻¹ x min ⁻¹)	
6.25 x 10 ⁻⁶	15.0 56.25 60 74.9	
7.50×10^{-5}		
1.00×10^{-4}		
1.00×10^{-3}		
1.00 x 10 ⁻²	75	

- . a) Estimate V_{max} and K_{max} .
 - b) What would v be at $[S] = 2.5 \times 10^{-5} \text{ M}$ and at $[S] = 5.0 \times 10^{-5} \text{ M}$?
 - c) What would v be at 5.0×10^{-5} M if the enzyme concentration were doubled?
 - d) The υ given in the above table was determined by measuring the concentration of product that had accumulated over a 10-minute period. Verify that υ Represents a true initial (or "instantaneous") velocity. [(1+1)+(2+2)+2+2]

- 10. A crude cell-free extract contained 20 mg of protein per millilitre. Ten microliters of this extract in a standard total reaction volume of 0.5 ml catalysed the formation of 30 nmoles of product in 1 min under optimum assay conditions (optimum pH and ionic strength, saturating concentrations of all substrates, coenzymes, activators, and the like).
 - a) Express υ in terms of nmoles/assay, nmoles ml⁻¹×min⁻¹, nmoles×liter⁻¹×min⁻¹, μmoles×liter⁻¹×min⁻¹.
 - b) What would υ be if the same 10 μ 1 of extract were assayed in a total volume of 1.0 ml?
 - c) What is the concentration of the enzyme in the assay mixture and in the extract (in terms of units/ml)?

d)	What is the specific activity of the preparation?	(2.5+2+3+2.5)
	×	